If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=8Y^2+59Y+21
We move all terms to the left:
-(8Y^2+59Y+21)=0
We get rid of parentheses
-8Y^2-59Y-21=0
a = -8; b = -59; c = -21;
Δ = b2-4ac
Δ = -592-4·(-8)·(-21)
Δ = 2809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2809}=53$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-53}{2*-8}=\frac{6}{-16} =-3/8 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+53}{2*-8}=\frac{112}{-16} =-7 $
| -17+3n=16 | | -6+14k=3 | | G(x)=-3^x+8 | | u-5.82=3.33 | | 2^2x-5·2^x+4=0 | | 16=11x+5x | | 2y+5y–=5+8 | | 4x-2x+5=24-2x=5-8 | | 12+6z=7 | | w+4.3=8.22 | | 40/8+w=w/200 | | 6(0)+14y=7 | | 63-9a=-36 | | 5a-14=-8a | | 1/2-(32)^(-x-1)+2^(-2x)=0 | | 6+5p=56 | | 40/200=w/8 | | w-4.53=2.3 | | 2(4x-3)-8=4+2x+ | | -10s-9=-3s | | 40/w=8/200 | | (x+10)+(2x-40)+(3x-90)=180 | | 1/2y=-75 | | 4(2x)=+4(2) | | 8+3t=15 | | 16−3p=1.5+p5 | | 12-1/5=2r | | 25-6x=21+4x | | −27.25=c+2.25 | | 6-4x+5x-20=15 | | a/7=-32 | | 3r=78+143r=78+14 |